Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
American Journal of Reproductive Immunology ; 89(Supplement 1):55-56, 2023.
Article in English | EMBASE | ID: covidwho-20233187

ABSTRACT

Problem: Environmental stress during pregnancy has known impacts on both maternal and fetal health. In terms of theCOVID-19 pandemic, the majority of published work has focused on the impact of the infection itself, without considering the potential immune impact of pandemic related-stress.We, therefore, assessed the impact of pandemic stress, independently of SARS-CoV-2 infection, on the circulating and placental immune profiles of pregnant individuals. Method(s): Placentas from 239 patients were collected at the Sainte- Justine Hospital, Montreal, Canada. Of these, 199 patients delivered during the pandemic and were exposed to pandemic stress with (+: 79) or without (-: 120) SARS-CoV-2 infection, the latter exposed to pandemic stress only. Pre-pandemic historic controls (uncomplicated pregnancies, Ctrl: 40), were also included. Placental biopsies were collected to assess cytokine levels by ELISAs and histopathological lesions. A sub-study with 35 pre-pandemic pregnancies (unexposed) and 20 who delivered during the pandemic (exposed) was also conducted. The latter (exposed/unexposed) were all uncomplicated pregnancies. We collected maternal blood prior to delivery for immunophenotyping, and plasma/peripheral blood mononuclear cells (PBMCs) were isolated. Inflammatory mediators in the plasma were quantified by ELISAs. Co-culture assays with PBMCs and human umbilical vein endothelial cells (HUVECs) were performed to assess endothelial activation. Demographical/obstetrical data were obtained through chart review. Result(s): SARS-CoV-2+ patients were multiethnic (63.4%), had higher pre-pregnancyBMI (28.9 vs. 24.8 inCtrl, P<.05), and elevated preterm birth rate (16.5% vs. 5.8% in SARS-CoV-2-, P < .05 and 0.0% in Ctrl, P < .01). In the placentas, we observed an increase in the levels of IL- 1Ra (P < .05) and CRP (P < .05) in both SARS-CoV-2 groups, while IL-6 (P = .0790) and MCP-1 (P < .001) were elevated solely in SARS-CoV- 2-. These changes were predominant in placentas with inflammatory lesions on histopathological analysis. Moreover, we observed elevated CD45+ cells (P < .001) in the placentas from both SARS-CoV-2 groups versus Ctrl. Considering that the differences we observed were important in the SARS-CoV-2- group, we performed a study solely on uncomplicated pregnancies, either exposed or unexposed to pandemic stress. At the systemic level, we observed a decrease in the percentage of Th2 cells (P < .001), leading to a pro-inflammatory Th1/Th2 imbalance in exposed individuals. Decreased Treg (P < .05) and Th17 (P < .05) versus unexposed was also observed. Surprisingly, decreased levels of circulating IL-6 (P < .05), MCP-1 (P < .01), and CRP (P<.05) were seen in exposed versus unexposed individuals. Finally,we observed increased secretion of ICAM, a marker of endothelial activation, solely in endothelial cells co-cultured with PBMCs from exposed individuals. Conclusion(s): Overall, placental inflammatory profiles differed between pregnant individuals exposed to pandemic stress with or without SARS-CoV-2 infection. Moreover, we observed that the pandemic stress exposed group presented a systemic pro-inflammatory bias. This highlights the need to understand the differences between the effects of pandemic-related stress and the added burden of SARS-CoV-2 infection itself on maternal and fetal health. Our work also supports an association between an increased risk of hypertension/ preeclampsia and SARS-CoV-2 infection that might be driven in part by pandemic-related stress.

2.
Journal of Hypertension ; 41:e88-e89, 2023.
Article in English | EMBASE | ID: covidwho-2238590

ABSTRACT

Background: Acute respiratory distress syndrome (ARDS) is a distinctive feature of severe COVID-19 infections that occurs mainly in patients with coexisting health problems, such as hypertension, atherosclerosis, and diabetes. Endothelial dysfunction is a major contributing factor during ARDS development in COVID- 19 patients with pre-existing comorbidities. Objective: Studying the mechanism by which endothelial activation and dysfunction could provide a therapeutic target for COVID-19 treatment. Design and method: The current study measured endothelial dysfunction and oxidative stress by incubating human umbilical vein endothelial cells (HUVECs) with plasma from patients with mild, moderate, severe and extremely severe COVID- 19. Using flow cytometry, wound-healing assays and phosphokinase arrays, Results: We detected increases in cell apoptosis;reactive oxygen species (ROS) formation;hypoxia-inducible factor-1 alpha (HIF-1 alpha), vascular cell adhesion molecule-1 (VCAM-1), and vascular endothelial growth factor receptor-1 (VEGFR-1) expression;viral entry;and inflammatory-related protein activity. We also found an impairment in the wound-healing process. Moreover, we found that AT1R blockade and P38 MAPK inhibition reversed all of these effects, especially in the severe group. Conclusions: These findings indicate that AT1R/P38 MAPK-mediated oxidative stress and endothelial dysfunction occur during COVID-19 infection.

3.
Matrix Biol Plus ; 16: 100121, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2049630

ABSTRACT

The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.

4.
European Heart Journal ; 42(SUPPL 1):3349, 2021.
Article in English | EMBASE | ID: covidwho-1554712

ABSTRACT

Objective: SARS-CoV-2 causes the coronavirus disease 2019 (COVID-19) and has spawned a global health crisis. Virus infection can lead to elevated markers of cardiac injury and inflammation associated with a higher risk of mortality. However, it is so far unclear whether cardiovascular damage is caused by direct virus infection or is mainly secondary due to inflammation. Recently, additional novel SARS-CoV-2 variants have emerged accounting for more than 70% of all cases in Germany. To what extend these variants differ from the original strain in their pathology remains to be elucidated. Here, we investigated the effect of the novel SARS-CoV-2 variants on cardiovascular cells. Results: To study whether cardiovascular cells are permissive for SARSCoV-2, we inoculated human iPS-derived cardiomyocytes and endothelial cells from five different origins, including umbilical vein endothelial cells, coronary artery endothelial cells (HCAEC), cardiac and lung microvascular endothelial cells, or pulmonary arterial cells, in vitro with SARS-CoV-2 isolates (G614 (original strain), B.1.1.7 (British variant), B.1.351 (South African variant) and P.1 (Brazilian variant)). While the original virus strain infected iPS-cardiomyocytes and induced cell toxicity 96h post infection (290±10 cells vs. 130±10 cells;p=0.00045), preliminary data suggest a more severe infection by the novel variants. To what extend the response to the novel variants differ from the original strain is currently investigated by phosphoproteom analysis. Of the five endothelial cells studied, only human coronary artery EC took up the original virus strain, without showing viral replication and cell toxicity. Spike protein was only detected in the perinuclear region and was co-localized with calnexin-positive endosomes, which was accompanied by elevated ER-stress marker genes, such as EDEM1 (1.5±0.2-fold change;p=0.04). Infection with the novel SARS-CoV-2 variants resulted in significant higher levels of viral spike compared to the current strain. Surprisingly, viral up-take was also seen in other endothelial cell types (e.g. HUVEC). Although no viral replication was observed (850±158 viral RNA copies at day 0 vs. 197±43 viral RNA copies at day 3;p=0.01), the British SARS-CoV-2 variant B.1.1.7 reduced endothelial cell numbers (0.63±0.03-fold change;p=0.0001). Conclusion: Endothelial cells and cardiomyocytes showed a distinct response to SARS-CoV-2. Whereas cardiomyocytes were permissively infected, endothelial cells took up the virus, but were resistant to viral replication. However, both cell types showed signs of increased toxicity induced by the British SARS-CoV-2 variant. These data suggest that cardiac complications observed in COVID-19 patients might at least in part be based on direct infection of cardiovascular cells. The more severe cytotoxic effects of the novel variants implicate that patients infected with the new variants should be even more closely monitored.

SELECTION OF CITATIONS
SEARCH DETAIL